Bayesian model adequacy and choice in phylogenetics.

نویسنده

  • Jonathan P Bollback
چکیده

Bayesian inference is becoming a common statistical approach to phylogenetic estimation because, among other reasons, it allows for rapid analysis of large data sets with complex evolutionary models. Conveniently, Bayesian phylogenetic methods use currently available stochastic models of sequence evolution. However, as with other model-based approaches, the results of Bayesian inference are conditional on the assumed model of evolution: inadequate models (models that poorly fit the data) may result in erroneous inferences. In this article, I present a Bayesian phylogenetic method that evaluates the adequacy of evolutionary models using posterior predictive distributions. By evaluating a model's posterior predictive performance, an adequate model can be selected for a Bayesian phylogenetic study. Although I present a single test statistic that assesses the overall (global) performance of a phylogenetic model, a variety of test statistics can be tailored to evaluate specific features (local performance) of evolutionary models to identify sources failure. The method presented here, unlike the likelihood-ratio test and parametric bootstrap, accounts for uncertainty in the phylogeny and model parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PuMA: Bayesian analysis of partitioned (and unpartitioned) model adequacy

SUMMARY The accuracy of Bayesian phylogenetic inference using molecular data depends on the use of proper models of sequence evolution. Although choosing the best model available from a pool of alternatives has become standard practice in statistical phylogenetics, assessment of the chosen model's adequacy is rare. Programs for Bayesian phylogenetic inference have recently begun to implement mo...

متن کامل

Story-telling: an essential part of science.

2 Kelchner, S.A. and Thomas, M.A. (2007) Model use in phylogenetics: nine key questions. Trends Ecol. Evol. 22, 87–94 3 Posada, D. and Crandall, K. (1998) Model test: testing the model of DNA substitution. Bioinformatics 14, 817–818 4 Goldman, N. (1993) Statistical tests of models of DNA substitution. J. Mol. Evol. 36, 182–198 5 Bollback, J.P. (2002) Bayesian model adequacy and choice in phylog...

متن کامل

The importance of proper model assumption in bayesian phylogenetics.

We studied the importance of proper model assumption in the context of Bayesian phylogenetics by examining >5,000 Bayesian analyses and six nested models of nucleotide substitution. Model misspecification can strongly bias bipartition posterior probability estimates. These biases were most pronounced when rate heterogeneity was ignored. The type of bias seen at a particular bipartition appeared...

متن کامل

Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm

Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...

متن کامل

Pseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours

When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2002